Abstract

Self-consistent evaluations of membrane electroporation along with local heating in single spherical cells arising from external AC radiofrequency electrical stimulation have been carried out. The present numerical study seeks to determine whether healthy and malignant cells exhibit separate electroporative responses with regards to operating frequency. It is shown that cells of Burkitt's lymphoma would respond to frequencies >4.5 MHz, while normal B-cells would have negligible porative effects in that higher frequency range. Similarly, a frequency separation between the response of healthy T-cells and malignant species is predicted with a threshold of about 4 MHz for cancer cells. The present simulation technique is general and so would be able to ascertain the beneficial frequency range for different cell types. The demonstration of higher frequencies to induce poration in malignant cells, while having minimal affecting healthy ones, suggests the possibility of selective electrical targeting for tumor treatments and protocols. It also opens the doorway for tabulating selectivity enhancement regimes as a guide for parameter selection towards more effective treatments while minimizing deleterious effects on healthy cells and tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call