Abstract

Direct selective metal deposition on semiconductors is of interest to electronic device technology, in particular for interconnects and Schottky devices. In this study, we investigate selective copper electrodeposition on patterned tantalum oxide thin films. Cyclic voltammetry studies show that thick tantalum oxide thin films have insulating properties while oxide films thinner than a critical value are semiconductors. Copper films electrodeposited on tantalum oxide thin films are known to form Schottky contacts. We demonstrate the formation of copper patterns on pre-patterned tantalum oxide films by a simple process: an insulating tantalum oxide film was grown electrochemically, the film was then mechanically scratched followed by mild oxidation to produce a thin tantalum oxide film inside the scratch. Based on the differential behavior of thin and thick tantalum oxide films, metal lines were electrodeposited selectively under formation of Schottky junctions. The process demonstrated in this paper is compatible to standard processes for semiconductor device fabrication while permitting flexible prototyping for research at small scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call