Abstract

Herein, a microporous organic-inorganic hybrid, vanadium phosphonate (VPn) material has been developed. With the combined advantages of the periodic organic-inorganic skeleton, a regular microporous channel with a crystalline pore wall, and good surface area, VPn displays electrocatalytic NRR activity with a selective NH3 yield (11.84 μg h-1 mgcat-1), faradaic efficiency of 26.29% at -0.6 V and high stability up to 15 h. The isotopic labeling experiment also verifies the electrosynthesis of NH3 both qualitatively and quantitatively. The theoretical simulation reveals that the associative distal route serves as the most favourable pathway during the NRR, with the first protonation step of *N2 leading to *NNH as the potential determining step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.