Abstract

Selective dehydrogenation reactions of tetrahydroisoquinoline derivatives through electrochemical oxidation are disclosed. In the presence of nitric acid, the selective partial dehydrogenation of tetrahydroisoquinolines to form 3,4-dihydroisoquinolines was achieved via anodic oxidation. The results of CV (Cyclic Voltammograms) experiments and DFT calculations showed the 3,4-dihydroisoquinolines protonated by an external Brønsted acid to be less prone than their unprotonated counterparts to oxidation under electrochemical conditions, thus avoiding their further dehydrogenation. Moreover, a TEMPO-mediated electrochemical oxidation enabled a complete dehydrogenation to yield fully aromatized isoquinolines. Thus, tunable processes involving electrochemical dehydrogenation of tetrahydroisoquinolines could be used to selectively produce various 3,4-dihydroisoquinolines and isoquinoline derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call