Abstract

We have analyzed the effect of sodium chlorate treatment of Madin-Darby canine kidney cells on the structure of heparan sulfate (HS), to assess how the various sulfation reactions during HS biosynthesis are affected by decreased availability of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate. Metabolically [(3)H]glucosamine-labeled HS was isolated from chlorate-treated and untreated Madin-Darby canine kidney cells and subjected to low pH nitrous acid cleavage. Saccharides representing (i) the N-sulfated domains, (ii) the domains of alternating N-acetylated and N-sulfated disaccharide units, and (iii) the N-acetylated domains were recovered and subjected to compositional disaccharide analysis. Upon treatment with 50 mM chlorate, overall O-sulfation of HS was inhibited by approximately 70%, whereas N-sulfation remained essentially unchanged. Low chlorate concentrations (5 or 20 mM) selectively reduced the 6-O-sulfation of HS, whereas treatment with 50 mM chlorate reduced both 2-O- and 6-O-sulfation. Analysis of saccharides representing the different domain types indicated that 6-O-sulfation was preferentially inhibited in the alternating domains. These data suggest that reduced 3'-phosphoadenosine 5'-phosphosulfate availability has distinct effects on the N- and O-sulfation of HS and that O-sulfation is affected in a domain-specific fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.