Abstract

A reliable nanotechnological sensing strategy, based on anS,N-co-doped graphene quantum dot (GQD) platform, has been developed to distinctly detect two key variants of vitamin D3, specifically the free (VD3) and the nanoencapsulated form (VD3Ms). For this purpose, food-grade vitamin D3 micelles were self-assembled using a low-energy procedure (droplet size: 49.6 nm, polydispersity index: 0.34, ζ-potential: -33 mV, encapsulation efficiency: 90 %) with an innovative surfactant mixture (Tween 60 and quillaja saponin). Herein, four fluorescent nanoprobes were also synthesized and thoroughly characterized: S,N-co-doped GQDs, α-cyclodextrin-GQDs, β-cyclodextrin-GQDs, and γ-cyclodextrin-GQDs. The goal was to achieve a selective dual sensing strategy for free VD3 and VD3Ms by exploiting their distinctive quenching behaviors. Thus, the four nanosensors allowed the individual sensing of both targetsto be performed (except α-CD-GQD for VD3Ms), but S,N-GQDs were finally selected due to selectivity and sensitivity (quantum yield, QY= 0.76) criteria. This choice led to a photoinduced electron transfer (PET) mechanism associated with static quenching, where differentiation was evidenced through a displayed 13-nm hypsochromic (blue) shift when interacting with VD3Ms. The reliability of this dual approach was demonstrated through an extensive evaluation of analytical performance characteristics. The feasibility and accuracy were proven in commercial food preparations and nutritional supplements containing declared nanoencapsulated and raw VD3, whose results were validated by a paired Student's t-test comparison with a UV-Vis method. To the best of our knowledge, this represents the first non-destructive analytical approach addressing the groundbreaking foodomic trend to distinctly detect different bioactive forms of vitamin D3, while also preserving their native nanostructures as achemical challenge, thus providing reliable information about their final stability and bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.