Abstract

In wheat ( Triticum aestivum L.), treatment with herbicide safeners enhances the expression of enzymes involved in pesticide detoxification and reduces crop sensitivity to herbicides. Since these same enzymes are involved in plant secondary metabolism, it was of interest to determine whether or not the safener cloquintocet mexyl perturbed phenolic metabolism in wheat seedlings. LC/ESI/MS analysis identified 14 phenolic substrates in the shoots of young wheat plants. Fragmentation imposed by collision induced dissociation identified specific C-glycosidic conjugates of 4′,5,7-trihydroxflavone (apigenin), 3′,4′,5,7-tetrahydroxyflavone (luteolin) and 3′- O-methylluteolin. Treatment of 7-day-old wheat shoots with cloquintocet mexyl resulted in an accelerated depletion of the conjugates of all three flavones, most notably with the glycosides of luteolin. In contrast, safener treatment caused the selective accumulation of 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone (tricin) and the phenylpropanoid ferulic acid. Changes in phenolic content were associated with an increase in O-methyltransferase and C-glucosyltransferase activity toward flavonoid substrates as well as the classic enhancement of detoxifying glutathione transferases. Our results suggest that in addition to altering the capacity of wheat to metabolise herbicides and other xenobiotics, safeners can also cause a selective shift in the metabolism of endogenous phenolics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.