Abstract

The development of highly sensitive and selective devices for rapid screening of polycyclic aromatic hydrocarbons (PAHs) in water is nowadays a crucial challenge owing to their alarming abundance in the environment and adverse health effects. Herein, inspired by the unique π-stacking interactions taking place between identical small aromatic molecules, a novel, generic, and straightforward methodology to electrochemically determine and discriminate such pollutants is described. Such a method is focused on covalently anchoring different PAHs on an indium tin oxide electrode surface by means of self-assembled monolayers. The surface-anchored PAHs act as recognition units to selectivity interact with a specific PAH target of the same nature. By tailoring the recognition platform with four different model PAH molecules (naphthalene, anthracene, pyrene, and fluoranthene) and carrying out an electronic tongue approximation, the selective discrimination and quantification of the selected PAHs in aqueous samples at ultralow concentrations were achieved impedimetrically, which were also validated using a certified reference PAH mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call