Abstract

Thermolysis of CoRu(CO)7(mu-PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(mu-P-P)(mu-PPh2) [where P-P = bma (3a), bpcd (3b)] along with trace amounts of the known complex CoRu(CO)6(PPh3)(mu-PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(mu-P-P)(mu-PPh2) [where P-P = bma (2a), bpcd (2b)] have been prepared by separate routes (mild thermolysis and Me3NO activation) and studied for their conversion to CoRu(CO)4(mu-P-P)(mu-PPh2). The penta- and tetracarbonyl complexes have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2a-->3a and of 2b-->3b were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters (2a-->3a, delta H++ = 29.2 +/- 1.4 kcal mol-1 and delta S++ = 8.2 +/- 3.8 eu; 2b-->3b, delta H++ = 27.7 +/- 0.6 kcal mol-1 and delta S++ = 1.4 +/- 1.6 eu), a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(mu-bma)(mu-PPh2) (3a), as determined by X-ray crystallography, reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride pi bond is coordinated to the cobalt atom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call