Abstract
We characterize the selective deposition of liquid microstructures on chemically heterogeneous surfaces by means of dip coating processes. The maximum deposited film thickness depends critically on the speed of withdrawal as well as the pattern size, geometry, and angular orientation. For vertically oriented hydrophilic strips, we derive a hydrodynamic scaling relation for the deposited film thickness which agrees very well with interferometric measurements of dip-coated liquid lines. Due to the lateral confinement of the liquid, our scaling relation differs considerably from the classic Landau–Levich formula for chemically homogeneous surfaces. Dip coating is a simple method for creating large area arrays of liquid microstructures for applications involving chemical analysis and synthesis, biochemical assays, or wet printing of liquid polymer or ink patterns.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.