Abstract
We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0mgg−1. From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.