Abstract

The optical sensor for "tea catechins" was built by immobilizing 2,2'-(1,4-phenylenedivinylene)bis-8-hydroxyquinoline (PBHQ) on TiO₂ nanoparticles (NPs). The sensor worked by "indophenol blue" dye formation on PBHQ-immobilized TiO₂ NPs as a result of p-aminophenol (PAP) autoxidation with dissolved O₂ at pH 10. Among quercetin, rutin, naringenin, naringin, gallic acid, caffeic acid, ferulic acid, p-coumaric acid, catechin, epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, and trolox, only catechin group antioxidants delayed the color formation on NPs, as measured by the reflectance signal at 710 nm. For quantitative analysis, reflectance signal versus time was recorded, and the difference between the areas under curve (ΔAUC) in the presence and absence of catechin was correlated (r = 0.98) to catechin concentration. The selectivity of the sensor for catechins was shown in tea infusions compared to other plant extracts and was ascribed to the nonplanar structure of catechin interfering with the formation of perfectly conjugated indophenol blue on TiO₂ surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.