Abstract
2,4,6-Trinitrophenol (TNP) is widely used in our daily life; however, excessive use of TNP can lead to a large number of diseases. Therefore, it is necessary to find an effective method to detect TNP. Herein, the rapid fluorescence quenching by TNP was developed for the fluorometric determination of TNP in aqueous medium based on the internal filter effect. Nitrogen-sulfur-codoped carbon nanoparticles (N,S-CNPs), synthesized by a one-pot solvothermal method with the precursors of L-cysteine and citric acid, were applied for the determination of TNP as a fluorescent probe. The excitation peak center of N,S-CNPs and the emission peak center are 340nm and 423nm, respectively. The probe can be used in a variety of conditions to detect TNP due to its relatively stable properties. Meanwhile, it has a fast response time (< 1min), wide linear response range (0.1-40μM), and low detection limit (43.0nM). This probe still has excellent selectivity and high sensitivity. The method was also used to detect standard water samples with a satisfactory recovery rate, and it will be used in the application of pollutants and clinical diseases. Graphical abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.