Abstract

Monitoring breath isoprene concentration plays a role in non-invasive diagnosis of blood-cholesterol levels. In this study, we developed a highly sensitive and selective isoprene analyzer based on a Pd-coated In2O3 thin film integrated in a miniaturized gas chromatography column. To improve the sensing performance, the In2O3 thin films were fabricated with high uniformity and crystallinity using a dual-ion-beam sputtering system, and various metal catalysts (Au, Pt, and Pd) were loaded on the film surface. Among them, the Pd catalyst afforded the highest sensing reaction and the lowest detection limit (approximately 0.4 ppb), which is the best performance ever reported. It also significantly lowered the optimal operating temperature of the sensor from 432 °C to 196 °C. The excellent isoprene sensing performance of the Pd-coated In2O3 film can be attributed to the high density of oxygen vacancies, efficient reduction-reoxidation of PdO, and the Mars-van-Krevelen catalytic reaction. We further optimized the isoprene sensing performance of a Pd-coated In2O3 film by varying the Pd thickness and discovered that 1 nm of Pd deposition showed the optimal status of discontinuous islands for sensing. We expect that our device can be applied to a portable breath isoprene analyzer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.