Abstract
Abstract We report on the propanol vapour (C3H8O) gas sensing characteristics of ZnO nanostructures prepared via hydrothermal assisted method. The ZnO-4h sensor showed a high response (i.e. resistance ratio), sensitivity and selectivity toward C3H8O gas at low operating temperature of 125 °C. A response and recovery times of approximately 190 and 200 s were recorded. The response of ZnO-4h based sensor to 40 ppm C3H8O was approximately 2 times higher than that of other sensing materials in dry air, while in the presence of 40% RH the response was 5 times higher. The exceptional C3H8O-sensing performance of ZnO-4h is related to more C3H8O adsorption sites provided by VO. The ZnO-04h based sensor showed a clear repeatability towards 40 ppm C3H8O for four successive cycles in the presence of various RH of 40 and 60% at 125 °C. The sensor response improved in the presence of RH humidity showing that the water vapour was not competing with the C3H8O for the pre-adsorbed oxygen ions, thus its interfering effect in the C3H8O sensing was considerably minimized. The ZnO-4h based sensor was further tested for long-term stability and the sensor was very stable after 45 days. The fundamental sensing mechanism towards C3H8O vapour is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.