Abstract

The aromatic structure and the rich nitrogen content of polymers based on covalent triazine-based frameworks (CTF) and their unique hydrophilic-lipophilic-balanced adsorption properties make them promising candidates for an adsorbent that can be used for sample pretreatment. Herein, a new covalent triazine-based framework (CTF-DBF) synthesized by a Friedel–Crafts reaction was used for the determination of the content of nucleotides in commercial infant formula. It was shown that the synthetic materials had an amorphous microporous structure, a BET surface area of up to 595.59 m2/g, and 0.39 nm and 0.54 nm micropores. The versatile adsorption properties of this material were evaluated by quantum chemistry theory calculations and batch adsorption experiments using five nucleotides as probes. The quantum chemistry results demonstrated that CTF-DBF can participate in multiple interactions with nucleotides. All the analyses performed present good linearity with R2 > 0.9993. The detection limits of targets ranged from 0.3 to 0.5 mg/kg, the spiked recoveries were between 85.8 and 105.3% and the relative standard deviations (RSD, n = 6) were between 1.1 and 4.5%. All these results suggest that this versatile CTF-DBF has great potential for sample pretreatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.