Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously present in the environment and associated with a variety of adverse health effects. Monohydroxylated PAHs (OH-PAHs), metabolites of PAHs, have been employed as biomarkers for human exposure assessment of PAHs. This manuscript describes new, selective detection methods for OH-PAHs using liquid chromatography and tandem mass spectrometry (LC/MS/MS). Electrospray ionization was operated in the negative ion mode to detect the deprotonated PAH metabolites ([M-H](-)). Hydroxylated metabolites of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, benzo[c]phenanthrene, chrysene, benzo[a]anthracene, and benzo[a]pyrene were selected for the method development. Based on the collision-induced dissociation MS/MS spectra of the selected OH-PAHs, a characteristic ion fragmentation, loss of 28 Da from the [M--H](-) ion, was identified for all of these OH-PAHs. This characteristic fragmentation was exploited for selective screening for OH-PAHs in human urine by incorporating a constant neutral loss (CNL) scan with data-dependent scanning, using a triple quadruple mass spectrometer. Selected reaction monitoring (SRM) was also used to tentatively identify isomers of the target OH-PAHs in human urine. The excellent linearity (3-4 orders of magnitude) and signal-to-noise performance provided by the SRM method allowed development of a sensitive LC/MS/MS method for measuring OH-PAHs in urine samples. The limits of detection of the SRM method ranged from approximately 0.1-5 pg on column for a suite of OH-PAHs tested in the study. The LC-SRM method was applied, following enzymatic deconjugation and solid-phase extraction of the urine, to preliminarily determine the OH-PAH concentrations in urine specimens from six Chinese non-occupationally exposed workers and seven Chinese coke oven workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.