Abstract

We report on the decomposition of the molecular contribution to the optically heterodyne-detected optical Kerr effect (OHD-OKE) in benzonitrile C6H5CN in the process of double-pulse laser excitation. The pump pulses with linear orthogonal polarizations, controllable intensities and timing enable us to manipulate the amplitudes of various molecular responses due to the fact that the OHD-OKE signal is formed by the superposition of independent third-order responses associated with each pump pulse. We apply this technique to detect the intermolecular response selectively by using an excitation scenario with suppression of orientational and intramolecular responses. A detailed comparative analysis of third-order optical responses indicates strongly that the double-pulse excitation of the OHD-OKE is the useful spectroscopic technique to obtain precise information on the intermolecular spectrum in liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call