Abstract

To reduce the risk of carbon monoxide (CO) poisoning, there is a strong need for small, compact gas sensors to detect and monitor CO at ppm concentrations. In this study, we focused on detecting CO with electrochemical sensors based on proton-conducting graphene oxide (GO) nanosheets at room temperature. We found that a Ce-doped GO nanosheet membrane fitted with the sensing electrode composed of Pt (10 wt %)-doped SnO2 nanocrystals exhibits an excellent sensor response to CO at 25 °C. Pt doping of SnO2 nanocrystals has made it possible to detect CO more selectively than H2 and ethanol. The CO detection mechanism is analyzed by operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Fourier transform infrared gas cell measurements, and comprehensive density functional theory-based calculations. The results revealed that adsorption of CO occurs predominantly on Pt sites, and the adsorbed CO is anodically oxidized at the interface between the sensing electrode and proton-conducting membrane, generating the selective sensor response. The strong adsorption of CO was realized with Pt (10 wt %)-doped SnO2 nanocrystals, as revealed by the DRIFTS analysis and temperature-programed desorption technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.