Abstract

Au-Pt alloy nanoparticles that are selectively anchored on TiO2 surface of the ellipsoidal zirconium titanium composite oxides were successfully prepared by a facile two-step method: prefabricated binary composite oxides on the ellipsoidal Fe2O3@SiO2 by a versatile cooperative template-directed coating method, and then in situ formation of Au-Pt alloy NPs with Sn2+ as the reduction agent. The alloy catalysts were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The result suggested that highly dispersive and ultrafine Au-Pt alloy nanoparticles were deposited onto TiO2 surface of the binary oxides solely. The particle size of nanoalloys was closely related to the ratio of Zr: Ti in the composite oxides shell. Increasing the content of Zr element led to a growth in the size of alloy nanoparticles. When used as catalysts for the reduction of 4-nitrophenol, the prepared supported alloyed catalysts exhibited high catalytic activity, and the sample could be easily recycled without a significant decrease of the catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.