Abstract

Metal organic frameworks (MOFs), a new class of porous crystalline materials have attracted attention because of potential applications in environmental remediation. In this work, an Fe-based MOF, FeBTC (BTC = 1,3,5-tricarboxylic acid), was successfully modified with Amberlite IRA-200 resin to yield a novel heterogeneous photocatalyst, A@FeBTC. The modification resulted in higher photocatalytic activity than FeBTC under the same conditions. After 60 min of visible light illumination (λ ≥ 420 nm) 99% of rhodamine B was degraded. The modification lowers the zeta potential, enhancing charge-based selective adsorption and subsequent photocatalytic degradation of cationic dye pollutants. The composite also improved catalyst stability and recyclability by significantly reducing loss of iron leaching. Photoluminescence studies show that introduction of the resin reduces the recombination rate of photogenerated charge carriers thereby improving the photocatalytic activity of the composite. Finally, a plausible photocatalytic reaction mechanism is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call