Abstract

Our recent study reported that excitatory pyramidal neurons in the entorhinal cortical layer II region (ECIIPN) target to CA1 parvalbumin-type inhibitory neurons (CA1PV) at a direct pathway and are one of the most vulnerable brain cells that are selectively degenerated in the early stage of Alzheimer's disease (AD). Our present study shows that death-associated protein kinase 1 (DAPK1) is selectively activated in ECIIPN of AD mice. Inhibition of DAPK1 by deleting a catalytic domain or a death domain of DAPK1 rescues the ECIIPN-CA1PV synaptic loss and improves spatial learning and memory in the early stage of AD. These data not only demonstrate a crucial molecular event for synaptic degeneration but also provide a therapeutic target for the treatment of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.