Abstract

NO decomposition in solid electrolyte cells was investigated in the presence of excess O2. The results show that NO is decomposed via an electrocatalytic mechanism rather than electrolysis in the range of 1–4 V of applied voltage. The NO is catalytically decomposed to N2 on the cathode surface and O2− produced in situ is transferred through the yttria-stabilized zirconia (YSZ) to the anode by direct current (d.c.) and then is evolved in the form of O2, which helps to maintain the active state of the cathode. In a Pd/YSZ/Pd cell, the palladium metal surface is the active site for NO decomposition, while in the RuO2/Pd/YSZ/Pd cell, the partially reduced RuO x (0 Au > Pd > Pt. Substitution of the Pd cathode by Ag leads to an increase in current density by a factor of 3.5. A higher NO decomposition parameter (α=13.4) is also achieved at a lower temperature of 500 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.