Abstract

Abstract Thirty liters of highly acidic spent nuclear fuel solutions need to be disposed at the “Hot Laboratory (hotlab)” facility in Paul Scherrer Institut (PSI), Switzerland. In order to significantly reduce the γ dose rate before proper disposal treatment, 137Cs must be removed. In the here presented sub-project, the ion-exchange method was evaluated. Two promising sorbents, CLEVASOL® and AMP (ammonium molybdophosphate), and two derived products AMP_PAN (AMP immobilized in polyacrylonitrile) and AMP/SiO2 (AMP immobilized on silica gel) were tested by the batch method using model solutions of important high-yield fission products (Cs, Eu, Zr, Ru, Pd and Ag), as well as U and Pu. The results showed that AMP, AMP/SiO2 and AMP_PAN have higher selectivity for Cs than CLEVASOL® in 0.1–8 M (mol/L) HNO3 solutions. 4 M HNO3 solution was identified as the most suitable condition for Cs-removal with AMP, AMP_PAN and AMP/SiO2 due to the still sufficiently high separation factor of Cs from other metal ions and an acceptable volume increase factor after dilution. The follow-up kinetic studies on AMP, AMP_PAN and AMP/SiO2 indicated that although Cs exchange on AMP and AMP/SiO2 is faster than on AMP_PAN in the first 5 min, they all nearly reach equilibrium after 30 min of contacting time. The isotherm curves of Cs adsorption on AMP, AMP_PAN and AMP/SiO2 in 4 M HNO3 showed that the maximum sorption capacity of Cs is reached asymptotically. The results from Langmuir isotherm modeling agree with results from other publications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.