Abstract
Selective covalent bond forming reactions (referred to as covalent reactions) can occur in gas-phase ion/ion reactions and take place via the formation of a long-lived chemical complex. The gas-phase ion/ion reactivity between sulfo-N-hydroxysuccinimide (sulfo-NHS) ester reagent anions and peptide cations containing a primary amine or guanidine group has been examined via DFT calculations and complex dissociation rate measurements. The results reveal insights regarding the roles of the barriers of competing processes within the complex. When the covalent reaction is exothermic, two prototypical cases, determined by the nature of the energy surface, are apparent. The product partitioning between covalent reaction and simple proton transfer upon dissociation of the long-lived complex is sensitive to activation conditions when the transition state barrier for covalent reaction is relatively high (case 1) but is insensitive to activation conditions when the transition state barrier is relatively low (case 2). Covalent reaction efficiencies are very high in case 2 scenarios, such as when the reactive site is a guanidine and the anion attachment site is a guanidinium ion. Covalent reaction efficiencies are variable, and generally low, in case 1 scenarios, such as when an amine is the reactive site and an ammonium ion is the site of anion attachment. A relatively long slow-heating step prior to the complex dissociation step, however, can dramatically increase covalent reaction yield in case 1 scenarios. Graphical Abstract ᅟ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.