Abstract

Furfural can be converted into maleic anhydride (73 % yield) through selective gas phase oxidation at 593 K with O(2) by using VO(x)/Al(2)O(3) (10 at(V) nm(-2)) as solid catalysts. The use of lower temperatures and/or O(2) pressures result in the additional formation of furan (maximum 9 % yield). Mechanistically, furfural (C(5)H(4)O(2)) is oxidized stepwise to furan (C(4)H(4)O), 2-furanone (C(4)H(4)O(2)), and finally, maleic anhydride (C(4)H(2)O(3)). The specific structure of the supported vanadium oxides and reaction conditions (temperature and reactants pressures) all influence furfural oxidation catalysis. We have found that Al(2)O(3)-supported polyvanadates are intrinsically more active (2.70 mmol h(-1) g-at V(-1)) than monovanadates (VO(4)) and V(2)O(5) crystals (0.89 and 0.70 mmol h(-1) g-at V(-1), respectively) in maleic anhydride and furan formation rates (553 K, 1.6 kPa furfural, 2.5 kPa O(2)). Our alternative approach enables the use of biomass instead of petroleum to synthesize maleic anhydride and furan from furfural. The potential variety of industrial applications is of enormous interest for the development of future biorefineries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call