Abstract

Transformation of greenhouse gas CO2 and renewable H2 into fuels and commodity chemicals is recognized as a promising route to store fluctuating renewable energy. Although several C1 chemicals, olefins, and gasoline have been successfully synthesized by CO2 hydrogenation, selective conversion of CO2 and H2 into aromatics is still challenging due to the high unsaturation degree and complex structures of aromatics. Here we report a composite catalyst of ZnAlOx and H-ZSM-5 which yields high aromatics selectivity (73.9%) with extremely low CH4 selectivity (0.4%) among the carbon products without CO. Methanol and dimethyl ether, which are synthesized by hydrogenation of formate species formed on ZnAlOx surface, are transmitted to H-ZSM-5 and subsequently converted into olefins and finally aromatics. Furthermore, 58.1% p-xylene in xylenes is achieved over the composite catalyst containing Si-H-ZSM-5. ZnAlOx&H-ZSM-5 suggests a promising application in manufacturing aromatics from CO2 and H2.

Highlights

  • Transformation of greenhouse gas CO2 and renewable H2 into fuels and commodity chemicals is recognized as a promising route to store fluctuating renewable energy

  • The renewable energy resources can generate abundant power, but low-efficiency and fluctuating nature limits their widespread applications[2]. These problems above could be effectively overcome via CO2 hydrogenation to fuels and commodity chemicals because hydrogen can be acquired from the clean electricity[3,4,5,6]

  • High selective olefins or gasoline has been achieved from CO2 hydrogenation via utilization of oxide/zeolite bifunctional catalysts which have been successfully applied in syngas-to-olefins (STO) or aromatics (STA) reactions[14,15,16,17,18,19,20]

Read more

Summary

Introduction

Transformation of greenhouse gas CO2 and renewable H2 into fuels and commodity chemicals is recognized as a promising route to store fluctuating renewable energy. Because metal catalysts or the Brønsted acid sites of the zeolites can catalyze hydrogenation reactions[26,27], it is challenging to synthesize aromatics with high unsaturation degree and complex structures under conditions of high H2 content. We report a composite catalyst made by nano-scaled spinel structural ZnAlOx oxide and H-ZSM-5 zeolite (ZnAlOx&H-ZSM-5), which exhibits 73.9% aromatics selectivity with only 0.4% CH4 selectivity among the carbon products without CO in CO2 hydrogenation reaction.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.