Abstract
Recent studies revealed that reef corals can eat large-sized pelagic and benthic animals in addition to small planktonic prey. As follow-up, we document natural ingestion of sea slugs by corals and investigate the role of sacoglossan sea slugs as possible prey items of scleractinian corals. Feeding trials were carried out using six sacoglossan species as prey, two each from the genera Costasiella, Elysia and Plakobranchus, and four free-living solitary corals (Danafungia scruposa, Fungia fungites, Pleuractis paumotensis and Heteropsammia cochlea) as predators. Trials were carried out under both in-situ and ex-situ conditions with the aim to observe ingestion and assess signs of prey consumption based on tissue loss of prey individuals over time. Significant differences were observed in both ingestion time and consumption state of prey between prey species, with three of them being ingested more rapidly and preferentially consumed over the others. Additionally, prey size was found to be a significant factor with larger prey (>12 mm) being ingested more slowly and rarely than smaller ones (<6 mm and 6–12 mm). Comparisons of consumption capability among predators showed no significant difference with all coral species showing similar preferences for prey species. While no specific mechanism of prey capture is proposed, we also document instances of kleptoparisitism and resuspension of prey items by wrasses. This study highlights the important distinction between opportunistic prey capture and true predation events.
Highlights
We explore the potential of such a relationship by means of three objectives. By use of both in-situ and ex-situ trials, we aim to ascertain the palatability of various sacoglossan species by large-mouthed solitary corals, which will be done by conducting feeding trials and measuring responses to prey items
To evaluate whether sea slugs have a trophic role in the diet of solitary scleractinian corals, feeding trials were carried between numerous species of coral and sea slug
Free-living monostomatous mushroom corals (Fungia fungites, Danafungia scruposa, and Pleuractis paumotensis) were sampled at depths corresponding to their greatest abundance, at 3–8 m, while Heteropsammia cochlea individuals were sampled likewise at depths of greatest abundance, at 12–16 m (Fig 2)
Summary
By use of both in-situ and ex-situ trials, we aim to ascertain the palatability of various sacoglossan species by large-mouthed solitary corals, which will be done by conducting feeding trials and measuring responses to prey items. We aim to investigate the role of habitat type on such relationships by utilising both predators and prey from two contrasting ecosystems, namely coral reefs and deeper soft-sediment habitats [5,26,44]. We aim to assess the method and rate by which prey captured by large monostomatous mushroom corals are transported from point of capture to the mouth
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.