Abstract

Thermoelectric materials which exhibit high performance throughout a range of temperature is required for successful scavenging of waste heat to generate electricity. Herein, we tailor the electronic structure of SnTe by co-doping Zn with three elements namely Ag, Ca and Mg. We observe that the dopants play complementary roles and improve the thermoelectric performance throughout the studied temperature range. Zn introduces resonance level and causes hyper-convergence to increase the Seebeck at low temperatures while M (M = Ag, Ca, Mg) enlarges the band gap preventing bipolar transport and also helps in the band convergence improving the performance at higher temperatures. The enhanced thermoelectric properties predicted by theoretical calculations is supported by experimental results. For the same concentration of doping, AgZn co-doped SnTe exhibits higher performance compared to the other two with an impressive ZT of ~1.54 at 840 K and average ZT of ~0.97 between 500 K and 840 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.