Abstract

1. 1. An apo-NADPH-ferredoxin reductase was prepared from holo-NADPH-ferredoxin reductase (EC 1.18.1.2) from bovine adrenocortical mitochondria. 2. 2. Amino acid residues of the apo-reductase were modified selectively, to identify the FAD-binding site of the reductase, with chemical reagents such as diethylpyrocarbonate, 5,5'-dithiobis(2-nitrobenzoate), tetranitromethane, pyridoxal 5'-phosphate, p-nitrophenylglyoxal, diisopropylfluorophosphate and N-bromosuccinimide. The binding of FAD to the apo-reductase was measured as quenching of the fluorescence of FAD caused by the binding between apo-reductase and FAD. The quenching was blocked when the apo-reductase was modified with diethylpyrocarbonate and restored on the addition of hydroxylamine. 3. 3. The blocking of the quenching occurred in a competitive manner as to FAD in the presence of diethylpyrocarbonate. However, when the apo-reductase was modified with 5,5'-dithiobis(2-nitrobenzoate), the blocking of the quenching occurred in a non-competitive manner. 4. 4. These results suggested that a histidyl residue of the apo-reductase is essential for the binding of FAD to the reductase. This was confirmed by amino acid sequencing of the modified apo-reductase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call