Abstract
Mercury-197 m/g are a promising pair of radioactive isomers for incorporation into a theranostic as they can be used as a diagnostic agent using SPECT imaging and a therapeutic via Meitner-Auger electron emissions. However, the current absence of ligands able to stably coordinate 197m/g Hg to a tumour-targeting vector precludes their use in vivo. To address this, we report herein a series of sulfur-rich chelators capable of incorporating 197m/g Hg into a radiopharmaceutical. 1,4,7,10-Tetrathia-13-azacyclopentadecane (NS4 ) and its derivatives, (2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetic acid (NS4 -CA) and N-benzyl-2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetamide (NS4 -BA), were designed, synthesized and analyzed for their ability to coordinate Hg2+ through a combination of theoretical (DFT) and experimental coordination chemistry studies (NMR and mass spectrometry) as well as 197m/g Hg radiolabeling studies and in vitro stability assays. The development of stable ligands for 197m/g Hg reported herein is extremely impactful as it would enable their use for in vivo imaging and therapy, leading to personalized treatments for cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.