Abstract

Selective cell ablation is an invaluable tool to investigate the function of cell types, the regeneration of cells, and the modeling of diseases associated with cell loss. The nitroreductase (NTR)-mediated cell ablation system is a simple method enabling the elimination of targeted cells through the expression of a nitroreductase enzyme and the application of a prodrug (such as metronidazole). The prodrug is reduced to a cytotoxic product by nitroreductase, thereby leading to DNA damage-induced cell death. In species with elevated regenerative capacity such as zebrafish, removing the prodrug allows endogenous tissue to replace the lost cells. Herein, we describe a method for the use of a markedly improved nitroreductase enzyme for spatially and temporally controlled targeted cell ablation in the zebrafish. Recently, we identified an NTR variant (NTR 2.0) that achieves effective targeted cell ablation at concentrations of metronidazole well below those causing toxic side effects. NTR 2.0 thereby enables the ablation of "resistant" cell types and novel cell ablation paradigms. These advances simplify investigations of cell function, enable interrogations of the effects of chronic inflammation on regenerative processes and facilitate modeling of degenerative diseases associated with chronic cell loss. Techniques for transgenic nitroreductase expression and prodrug application are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.