Abstract
Selective blockade of CD28 is a promising therapy to inhibit pathogenic alloimmunity. However, evaluation of this approach in transplantation has been very limited. Using a novel nonactivating single-chain Fv-based reagent (α28scFv), we have investigated the role of CD28 and cytotoxic T lymphocyte antigen 4 (CTLA-4) in a murine cardiac transplant model. Blockade of CD28 for 2 weeks after engraftment promoted allograft survival, and significantly attenuated chronic rejection when combined with transient CD154-blockade or calcineurin inhibition. Graft acceptance was associated with decreased alloantibody production, increased proportion of early graft infiltration by regulatory T cells and increased expression of regulatory dendritic cell genes. Blockade of CTLA-4 during α28scFv-based treatments led to prompt rejection in all animals and inhibited expression of forkhead box P3 (Foxp3), programmed death (PD)-1 and 2,3-indoleamine dioxygenase (IDO) in the graft. These results show that CD28 signaling during the first weeks after transplant is a pivotal mediator of pathogenic alloimmunity, and that selective CD28 blockade prolongs graft acceptance by at least two immunomodulatory mechanisms. Selective CD28 inhibition while sparing CTLA-4 is thus a promising approach to inhibit pathogenic alloimmunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.