Abstract

The reaction of alkynes with [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Me, Ph, Cy) affords, depending on the structure of the alkyne and the substituent of the phosphine ligand, allyl carbene or butadienyl carbene complexes. These reactions involve the migration of the phosphine ligand or a facile 1,2 hydrogen shift. Both reactions proceed via a metallacyclopentatriene complex. If no alpha C[bond]H bonds are accessible, allyl carbenes are formed, while in the presence of alpha C[bond]H bonds butadienyl carbenes are typically obtained. With diphenylacetylene, on the other hand, a cyclobutadiene complex is formed. A different reaction pathway is encountered with HC[triple bond]CSiMe(3), ethynylferrocene (HC[triple bond]CFc), and ethynylruthenocene (HC[triple bond]CRc). Whereas the reaction of [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Ph and Cy) with HC[triple bond]CSiMe(3) affords a vinylidene complex, with HC[triple bond]CFc and HC[triple bond]CRc this reaction does not stop at the vinylidene stage but subsequent cycloaddition yields allenyl carbene complexes. This latter C[bond]C bond formation is effected by strong electronic coupling of the metallocene moiety with the conjugated allenyl carbene unit, which facilitates transient vinylidene formation with subsequent alkyne insertion into the Ru[double bond]C bond. The vinylidene intermediate appears only in the presence of bulky substituents of the phosphine coligand. For the small R=Me, head-to-tail coupling between two alkyne molecules involving phosphine migration is preferred, giving the more usual allyl carbene complexes. X-ray structures of representative complexes are presented. A reasonable mechanism for the formation of both allyl and allenyl carbenes has been established by means of DFT calculations. During the formation of allyl and allenyl carbenes, metallacyclopentatriene and vinylidene complexes, respectively, are crucial intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call