Abstract

We studied cation exchange (CE) in core/shell Cu2–xSe/Cu2–xS nanorods with two cations, Ag+ and Hg2+, which are known to induce rapid exchange within metal chalcogenide nanocrystals (NCs) at room temperature. At the initial stage of the reaction, the guest ions diffused through the Cu2–xS shell and reached the Cu2–xSe core, replacing first Cu+ ions within the latter region. These experiments prove that CE in copper chalcogenide NCs is facilitated by the high diffusivity of guest cations in the lattice, such that they can probe the whole host structure and identify the preferred regions where to initiate the exchange. For both guest ions, CE is thermodynamically driven as it aims for the formation of the chalcogen phase characterized by the lower solubility under the specific reaction conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.