Abstract

A novel V2O5-MoO3/TiO2/Al2O3 metal wire-mesh-honeycomb catalyst prepared by electrophoretic deposition (EPD) was investigated for the selective catalytic reduction (SCR) of NO with NH3. The effects of reaction temperature, space velocity and NH3/NO ratio on the SCR activity were evaluated. The experimental results show that V2O5-MoO3/TiO2/Al2O3 catalyst can achieve satisfied NO removal effect at 350°C; the increase of the space velocity will make NO conversion ratio reduce, except 400°C. NH3/NO ratio has a little influence on NO removal efficiency, which raises slowly with the increasing NH3/NO ratio. At the same time, body structure and surface character of catalyst prepared were characterized by XRD, SEM and XPS. Combining characterization with the results of activity test, the relation between catalyst structure and catalysis performance was analyzed. The results of characterization show that the active component is uniformly distributed on the catalyst carrier as a single layer and high SCR activity is attributed to the strong interaction between TiO2 and V2O5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call