Abstract

The direct oxidation of ethanol to acetic acid is catalyzed by multicomponent metal oxides (Mo-V-NbO(x)) prepared by precipitation in the presence of colloidal TiO(2) (Mo(0.61)V(0.31)Nb(0.08)O(x)/TiO(2)). Acetic acid synthesis rates and selectivities (~95 % even at 100 % ethanol conversion) were much higher than in previous reports. The presence of TiO(2) during synthesis led to more highly active surface areas without detectable changes in the reactivity or selectivity of exposed active oxide surfaces. Ethanol oxidation proceeds via acetaldehyde intermediates that are converted to acetic acid. Water increases acetic acid selectivity by inhibiting acetaldehyde synthesis more strongly than its oxidation to acetic acid, thus minimizing prevalent acetaldehyde concentrations and its intervening conversion to CO(x). Kinetic and isotopic effects indicate that C-H bond activation in chemisorbed ethoxide species limits acetaldehyde synthesis rates and overall rates of ethanol conversion to acetic acid. The VO(x) component in Mo-V-Nb is responsible for the high reactivity of these materials. Mo and Nb oxide components increase the accessibility and reducibility of VO(x) domains, while concurrently decreasing the number of unselective V-O-Ti linkages in VO(x) domains dispersed on TiO(2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.