Abstract

We present the remarkable performance improvement of organic solar cells upon incorporating N- or B-doped carbon nanotubes (CNTs) into the organic semiconductor active layer. A small amount (0.2–5.0 wt%) of doped multi-walled CNTs are added to the bulk-heterojuction of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C 61 (PCBM). Unlike undoped metallic multi-walled CNTs, which cause undesired electron-hole recombination, N- or B-doped CNTs uniformly dispersed in the active layer selectively enhance electron or hole transport, respectively, and eventually help carrier collection. Specifically, the incorporation of 1.0 wt% B-doped CNTs results in a balanced electron and hole transport and accomplishes a power conversion efficiency improvement from 3.0 % (conventional control cells without CNTs) to 4.1 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.