Abstract

Tentacle‐like polymers decorated with several copies of peptide antigens can be interesting tools for increasing the ability to capture circulating antibodies in patient sera, using cooperative effects for stronger avidity. We previously showed that antibodies from multiple sclerosis (MS) patient sera preferentially recognize hyperglucosylated adhesin protein HMW1ct of non‐typeable Haemophilus influenzae (NTHi). We selected the C‐terminal HMW1ct(1347–1354) minimal epitope and prepared the diglucosylated analogue Ac‐KAN(Glc)VTLN(Glc)TTG‐K(N3)‐NH2 to graft a 40 kDa dextran scaffold modified with glycidyl‐propargyl moieties to perform a copper catalyzed alkyne‐azide coupling reaction (CuAAC). Quantitative NMR measurements allowed the characterization of the peptide loading (19.5 %) on the multivalent dextran conjugate. This novel polymeric structure displayed optimal capturing properties of both IgG and, more interestingly, IgM antibodies in MS sera. Specific antibodies from a representative MS serum, were successfully depleted using a Sepharose resin bearing the new glucosylated multivalent conjugate, as confirmed by ELISA. These results may offer a promising proof‐of‐concept for the selective purification of high affinity autoantibodies from sera of autoimmune patients, in general, and of specific high affinity antibodies against a minimally glcosylated epitope Asn(Glc) from sera of multiple sclerosis (MS) patients, in particular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.