Abstract

To monitor d-glucose (Glu) in complex aqueous media with a high specificity, a conceptually new "selective capture and controllable detection" nanoreactor was explored. We designed and synthesized poly maleic anhydride-styrene-N-isopropylacrylamide-(4-aminophenyl) boronic acid [P(MAn-St-NIPAm-PBA)] to fabricate the nanoreactor. On the surface of the self-assembled, micelle-based nanoreactor, the stereo precise placement PBA provided a recognition unit in the block copolymer structure to boost the selective capture of Glu over other saccharides. P(MAn-St-NIPAm) served as the thermal sensitive moiety of the nanoreactor, which embedded with glucose oxidase and myoglobin-based catalyst in order to realize the controllable enzymolysis of Glu through temperature alteration. Once the nanoreactor was mixed with Glu, an obvious change in the UV-visible intensity of quinine produced in the multienzymolysis was observed. Glu in the rat microdialysates of brain ischemia was successfully monitored by the nanoreactor method, demonstrating the feasibility of constructing high-specificity nanoreactors for cerebral system applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.