Abstract

Biochar materials have shown great potential for broad catalytic application. However, using these materials in the capacitive deionization technology (CDI) system for heavy metal removal still faces a significant challenge due to their low specific capacity and removal capability. Here, a comprehensive regulation on the interfacial/bulk electrochemistry of biochar by Zn doping is reported, which suggests a high renewable capacity (20mgg-1) and outstanding selective capacitive removal ability (SCR) of Pb2+ from leachate. The SCR efficiency of Pb2+ is as high as 99% compared to K+ (8%), Na+ (13%), and Cd2+ (37%). This work proves that the doped Zn on the biochar can combine with OH- generated by water splitting to form M─OH bonds, which is beneficial for improving the specific capacity. Significantly, the relationship between double-layer capacitance and pseudo-capacitance can also be optimized by regulating the content of Zn, leading to different removal abilities of heavy metals. Therefore, this work offers insights into charge-storage kinetics, which provide valuable guidelines for designing and optimizing the biochar electrode for broader environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.