Abstract
BackgroundF1Fo-ATP synthase (F1Fo-ATPase) is a reversibly rotary molecular machine whose dual functions of synthesizing or hydrolyzing ATP switch upon the condition of cell physiology. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of mitochondria inner membrane, but the effect of F1Fo-ATPase on X-ray response of non-small-cell lung cancer (NSCLC) cells is unknown.Methods and FindingsWe studied whether ATP hydrolysis affected X-ray radiation induced cell death. NSCLC cells (A549) were pretreated with BTB06584 (BTB), an elective ATP hydrolysis inhibitor, followed by X-ray radiation. Cell viability and clonogenic survival were markedly decreased, clear indications of enhanced radiosensitivity through BTB incubation. Additionally, ATP5α1 was upregulated in parallel with elevated ATP hydrolytic activity after X-ray radiation, showing an increased mitochondrial membrane potential (ΔΨm). ATP hydrolysis inhibition led to collapse of ΔΨm suggesting ATP hydrolytic activity could enhance ΔΨm after X-ray radiation. Furthermore, we also demonstrated that apoptosis was pronounced with the prolonged collapse of ΔΨm due to hydrolysis inhibition by BTB incubation.ConclusionOverall, these findings supported that ATP hydrolysis inhibition could enhance the radiosensitivity in NSCLC cells (A549) after X-ray radiation, which was due to the collapse of ΔΨm.
Highlights
Lung cancer is one of the worldwide common types of malignant tumors with two main categories: non-small cell lung cancer and small cell lung cancer [1]
Overall, these findings supported that ATP hydrolysis inhibition could enhance the radiosensitivity in non-small-cell lung cancer (NSCLC) cells (A549) after X-ray radiation, which was due to the collapse of ΔΨm
Considering BTB could be a potential radiosensitizer in radiotherapy, we firstly assessed the cytotoxicity on several concentrations
Summary
Lung cancer is one of the worldwide common types of malignant tumors with two main categories: non-small cell lung cancer and small cell lung cancer [1]. F1 domain of F1Fo-ATP synthase makes clockwise rotation to catalyze the phosphorylation of ADP to ATP by exploiting the transmembrane proton motive force (Δp) [9]. When Δp collapse, F1 domain makes the counter clockwise rotation and switches its catalytic activity to ATP hydrolysis accompanied by transportation of H+ back to intermembrane space [10,11,12], which is usually associated with deprivation of oxygen or experiencing ischemia in numerous tissues [13, 14]. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of mitochondria inner membrane, but the effect of F1Fo-ATPase on X-ray response of non-small-cell lung cancer (NSCLC) cells is unknown
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.