Abstract
We showed that the investigation of the selective association of phospholipids might contribute to the insight of the flip-flop diffusion processes. The process of selective association was studied quantitatively by testing the association probabilities for both parallel and anti-parallel orientations of the polar headgroups. The model of double chain binary mixture confirms a high capacity of phospholipids for self-association in parallel configuration of the electric dipole moments whether the cross-sectional area of the polar headgroups are in an usual range of 25–55 Å 2. It is demonstrated that the aggregation of a class of phospholipids from a binary mixture is strongly dependent on the dipole-dipole interaction between the same phospholipids and is modulated by the magnitude of the electric dipole moment of the other phospholipids from that binary mixture. There are a great number of mechanisms involved in the transbilayer movement of phospholipids. We referred here only to the passive transport of lipids from one monolayer to the other. The flip-flop mechanisms raised in this paper are the breakdown of bilayer due to the increase of the packing density and the inversion of the coupled phospholipids from the opposite monolayers of the same bilayer. Thus, the pair formation promoting a drop in occupied volume decreases the packing pressure in the respective monolayer and consequently triggers a flip-flop into the other direction since the packing pressure in the other monolayer has not dropped. According to the present model for the binary mixtures of double-chain lipids, the rate of the flip-flop diffusion decreased by increasing the number of the methylene groups added to the acyl chain. This dependence may be perturbed whether the phospholipids possesses a very high cross-section area of the polar headgroups ( a > 55 A ̊ 2 ). We think that the selective association of phospholipids is neither exclusively, nor only involved in promoting the transbilayer diffusion of phospholipids. Most probably, the selective association determines some phospholipid domains that attract certain particular proteins so that it can modulate the protein activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.