Abstract

We report on the structural and electrical characterizations of MnAs/GaAs hybrid nanowires fabricated by combining selective-area metal–organic vapor phase epitaxy of undoped GaAs nanowires and endotaxial nanoclustering of MnAs. As a result of endotaxy, MnAs nanoclusters are typically embedded in the six ridges of hexagonal GaAs nanowires. However, the MnAs nanoclusters are formed not only at the six ridges, but on the surfaces of six 01̄1 facets of hexagonal GaAs nanowires, when we decrease the growth temperature from 600 to 400 °C. From the cross-sectional characterizations by transmission electron microscopy, the size and density of the MnAs nanoclusters formed at the top part of the GaAs nanowires are much larger than those formed at the bottom part of the nanowires. Current and voltage characteristics of MnAs/GaAs hybrid nanowires are investigated using two-terminal device structures of free-standing hybrid nanowires. The hybrid nanowires formed on Zn-doped p-type GaAs (111)B substrates show ohmic characteristics, while those formed on Si-doped n-type GaAs (111)B substrates show clear rectifying characteristics. The hybrid nanowires show p-type conductivity possibly owing to the formation of p-type GaAs layers near the nanowire surfaces caused by the thermal diffusion of Mn atoms into GaAs nanowires during the endotaxial nanoclustering of MnAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call