Abstract

Selective area epitaxy (SAE) provides the path for scalable fabrication of semiconductor nanostructures in a device-compatible configuration. In the current paradigm, SAE is understood as localized epitaxy, and is modelled by combining planar and self-assembled nanowire growth mechanisms. Here we use GaAs SAE as a model system to provide a different perspective. First, we provide evidence of the significant impact of the annealing stage in the calculation of the growth rates. Then, by elucidating the effect of geometrical constraints on the growth of the semiconductor crystal, we demonstrate the role of adatom desorption and resorption beyond the direct-impingement and diffusion-limited regime. Our theoretical model explains the effect of these constraints on the growth, and in particular why the SAE growth rate is highly sensitive to the pattern geometry. Finally, the disagreement of the model at the largest pitch points to non-negligible multiple adatom recycling between patterned features. Overall, our findings point out the importance of considering adatom diffusion, adsorption and desorption dynamics in designing the SAE pattern to create pre-determined nanoscale structures across a wafer. These results are fundamental for the SAE process to become viable in the semiconductor industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.