Abstract

Inflammation is mediated mainly by leukocytes that express both Toll-like receptor 4 (TLR4) and Fc γ receptors (FcγR). Dysregulated activation of leukocytes via exogenous and endogenous ligands of TLR4 results in a large number of inflammatory disorders that underlie a variety of human diseases. Thus, differentially blocking inflammatory cells while sparing structural cells, which are FcγR-negative, represents an elegant strategy when targeting the underlying causes of human diseases. Here, we report a novel tethering mechanism of the Fv and Fc portions of anti-TLR4 blocking antibodies that achieves increased potency on inflammatory cells. In the presence of ligand (e.g. lipopolysaccharide (LPS)), TLR4 traffics into glycolipoprotein microdomains, forming concentrated protein platforms that include FcγRs. This clustering produces a microenvironment allowing anti-TLR4 antibodies to co-engage TLR4 and FcγRs, increasing their avidity and thus substantially increasing their inhibitory potency. Tethering of antibodies to both TLR4 and FcγRs proves valuable in ameliorating inflammation in vivo. This novel mechanism of action therefore has the potential to enable selective intervention of relevant cell types in TLR4-driven diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.