Abstract

BT-R(1) is a member of the cadherin superfamily of proteins and is expressed in the midgut epithelium of Manduca sexta during larval development. Previously, we showed that calcium ions influence the structure and stability of BT-R(1) on brush border membrane vesicles (BBMVs) prepared from M. sexta midgut epithelium. In the present study, the effects of calcium and Cry1Ab toxin, produced by Bacillus thuringiensis, on the adhesive properties of BBMVs were investigated. Addition of calcium to a suspension of BBMVs promoted adhesion and aggregation of the vesicles. Treatment of BBMVs with trypsin or lowering the pH (pH 4.0) of the BBMV suspension abolished calcium-induced vesicle aggregation, whereas treatment with deglycosylating enzymes did not affect the aggregation of vesicles, indicating that adhesion and clustering of BBMVs involves protein-protein interactions. Preincubation of BBMVs with Cry1Ab toxin, which specifically binds to BT-R(1) with high affinity and disrupts the midgut epithelium of M. sexta, caused a 50% decrease in calcium-induced vesicle aggregation. The inhibitory effects of the Cry1Ab toxin on BBMV aggregation was blocked completely when the toxin was preincubated with a peptide containing the toxin-binding site of BT-R(1). Cry3A toxin, which is similar in molecular structure to Cry1Ab but does not bind to BT-R(1) and is not toxic to M. sexta larvae, did not affect BBMV aggregation. The results of this study demonstrate that the adhesive function of BT-R(1) is compromised by the Cry1Ab toxin, which acts as a selective antagonist, and supports the notion that BT-R(1) is critical in preserving the integrity of larval midgut epithelium in M. sexta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call