Abstract

Retinal ganglion cells exhibit fast and slow inhibitory synaptic glycine currents that can be selectively inhibited by strychnine and 5,7-dichlorokynurenic acid (DCKA), respectively. In this study we examined whether strychnine and DCKA selectivity correlated with the subunit composition of the glycine receptor. Homomeric alpha1, alpha2 or alpha2* glycine subunits were in vitro expressed in human embryonic kidney cells (HEK 293). In cells expressing the alpha1 subunit, responses to 200 microm glycine were blocked by 1 microm strychnine but not by 500 microm DCKA. In cells expressing the alpha2 subunit, both 1 microm strychnine and 500 microm DCKA were effective antagonists of 200 microm glycine. In cells expressing alpha2* subunits, which are much less glycine-sensitive, 10 mm glycine was inhibited by 500 microm DCKA but not by 1 microm strychnine. A single amino acid mutation in the alpha1 subunit (R196G), converted this subunit from DCKA-insensitive to DCKA-sensitive. In conclusion, the comparative effectiveness of strychnine and DCKA can be used to distinguish between the alpha1, alpha2 and alpha2* receptor responses. Furthermore, a single amino acid near the glycine receptor's putative agonist binding site may account for differences in DCKA sensitivity amongst the alpha subunits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call