Abstract

New insecticides are urgently needed because resistance to current insecticides allows resurgence of disease-transmitting mosquitoes while concerns for human toxicity from current compounds are growing. We previously reported the finding of a free cysteine (Cys) residue at the entrance of the active site of acetylcholinesterase (AChE) in some insects but not in mammals, birds, and fish. These insects have two AChE genes (AP and AO), and only AP-AChE carries the Cys residue. Most of these insects are disease vectors such as the African malaria mosquito (Anopheles gambiae sensu stricto) or crop pests such as aphids. Recently we reported a Cys-targeting small molecule that irreversibly inhibited all AChE activity extracted from aphids while an identical exposure caused no effect on the human AChE. Full inhibition of AChE in aphids indicates that AP-AChE contributes most of the enzymatic activity and suggests that the Cys residue might serve as a target for developing better aphicides. It is therefore worth investigating whether the Cys-targeting strategy is applicable to mosquitocides. Herein, we report that, under conditions that spare the human AChE, a methanethiosulfonate-containing molecule at 6 µM irreversibly inhibited 95% of the AChE activity extracted from An. gambiae s. str. and >80% of the activity from the yellow fever mosquito (Aedes aegypti L.) or the northern house mosquito (Culex pipiens L.) that is a vector of St. Louis encephalitis. This type of inhibition is fast (∼30 min) and due to conjugation of the inhibitor to the active-site Cys of mosquito AP-AChE, according to our observed reactivation of the methanethiosulfonate-inhibited AChE by 2-mercaptoethanol. We also note that our sulfhydryl agents partially and irreversibly inhibited the human AChE after prolonged exposure (>4 hr). This slow inhibition is due to partial enzyme denaturation by the inhibitor and/or micelles of the inhibitor, according to our studies using atomic force microscopy, circular dichroism spectroscopy, X-ray crystallography, time-resolved fluorescence spectroscopy, and liquid chromatography triple quadrupole mass spectrometry. These results support our view that the mosquito-specific Cys is a viable target for developing new mosquitocides to control disease vectors and to alleviate resistance problems with reduced toxicity toward non-target species.

Highlights

  • Mosquitoes are a principal insect vector of infectious diseases that afflict both developing countries and industrialized nations

  • We report data confirming that Cys286 of AgAPAChE or its equivalent in the Ae. aegypti or C. pipiens is targetable by sulfhydryl agents and that AP-AChE contributes most of the measurable AChE activity in An. gambiae s. str., Ae. aegypti, and C. pipiens

  • In search of evidence for conjugation to the active-site Cys residue, we found that 2-mercaptoethanol caused significant reactivation of the AMTS13-inhibited AgAChE and the AMTS18-inhibited AgAChE (Table 1), it concomitantly reduced the catalytic activity of the apo AgAChE

Read more

Summary

Introduction

Mosquitoes are a principal insect vector of infectious diseases that afflict both developing countries and industrialized nations. Mosquito populations have surged due to emergence of insect populations with increased resistance to common insecticides. Another important factor in pest resurgence is lax control measures owing partly to growing concerns about insecticide safety [5]. Such concern may be well founded, since many insecticides phosphorylate or carbamylate indiscriminately a ubiquitous catalytic serine residue at the active site of acetylcholinesterase (AChE, EC 3.1.1.7), a serine hydrolase vital for regulating cholinergic neurotransmission in mammals, birds, fish, and insects [6]. There is an urgent need for novel insecticides to control mosquito-borne diseases, especially malaria. According to World Malaria Report 2008 (http://apps.who.int/malaria/ wmr2008/), half of the world’s population is at risk of malaria, and an estimated 247 million cases led to nearly 881,000 deaths in 2006

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call