Abstract

Introduction: Alterations in the visual pathway involving the retina have been reported in amyotrophic lateral sclerosis (ALS) but they lack consistency and subgroup analysis. We aimed to assess the retinal nerve fiber layer (RNFL) and retinal ganglion cells (RGCs) alterations in different stages of ALS patients and their association with ALS progression parameters.Methods: The study population consisted of 70 clinically diagnosed ALS patients and 55 age, sex matched controls. All of them underwent ophthalmic assessments and optical coherence tomography imaging. Four quadrants of the peripapillary RNFL and ganglion cell/inner plexiform complex (GCIP) were observed and automatically measured. Early-stage distal motor neuron axon dysfunction in ALS was detected by compound muscle action potential (CMAP) of the distal limbs within 12 months. The ALS disease parameters included the ALSFRS-R score and the disease progression rate (ΔFS).Results: Generally compared with controls, the nasal (p = 0.016) quadrant of the RNFL was thicker in ALS patients. When controlling for age and ΔFS, the RNFL(r = 0.37, p = 0.034) and GCIP(r = 0.40, p = 0.021) were significantly thickened as disease progressed within 12 months, while the RNFL declined with time after one year (r = −0.41, p = 0.037). ALS patients was subclassified into thickened RNFL (T-RNFL, >95th percentile of normal), impaired RNFL (I-RNFL, <5th percentile of normal) and normal RNFL. There were significant differences in the GCIP among the three groups (p < 0.001). In the T-RNFL group (n = 18), the RNFL was negatively correlated with the abductor pollicis brevis-CMAP amplitude within 12 months (r = −0.56, p = 0.01). Patients within 12 months in this group progressed faster than others (p = 0.039). In the normal RNFL group (n = 22), 13 patients were diagnosed beyond 12 months, whose ΔFS was remarkably lower (p = 0.007). In I-RNFL group (n = 30), the early stage patients (<12 months) had significant higher ΔFS (p = 0.006). One patient was with SOD1 pathogenic variant (p.A5V).Conclusion: Alterations of retinal nerve were not consistent in ALS patients with diverse phenotypes and progression rates. Generally speaking, the RNFL thickened during the first year and then gradually declined, which is related to but preceding the thickness change of the RGCs. Patients with a significant RNFL thinning in the early stage may have a faster progression rate. The inverse U-shaped curve transformation might be in accordance with early-stage motor neuron axonopathy.

Highlights

  • Alterations in the visual pathway involving the retina have been reported in amyotrophic lateral sclerosis (ALS) but they lack consistency and subgroup analysis

  • Optical coherence tomography (OCT) scans from 70 ALS patients and 55 healthy controls were included in the analyses

  • ALS patients and healthy controls did not differ in age or sex

Read more

Summary

Introduction

Alterations in the visual pathway involving the retina have been reported in amyotrophic lateral sclerosis (ALS) but they lack consistency and subgroup analysis. Optical coherence tomography (OCT) is a non-invasive imaging technique that is accurate, objective, and reproducible It could provide high-resolution images of the retina and precisely and objectively quantify discrete neuronal layers, including the peripapillary retinal nerve fiber layer (RNFL, representing the unmyelinated axons of retinal ganglion cells), retinal ganglion cell bodies and the inner plexiform layer (GCIP, representing the health of the ganglion cell layer). This technique has been applied to detect neuroaxonal retinal abnormalities in neurodegenerative disease like Parkinson’s Disease (Huang et al, 2020), progressive supranuclear palsy (Schneider et al, 2014), multiple system atrophy (Schneider et al, 2014) and Alzheimer’s disease (Kirbas et al, 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.